RBF kernel method and its applications to clinical data
نویسندگان
چکیده
In this paper, basing our considerations on kernel-based approaches, we propose a new strategy allowing to approximate the prostate cancer dynamics. In particular, starting from several measurements of a specific biomarker, we estimate the tumor growth rate. To achieve this aim, we pre-process data via Radial Basis Function (RBF) interpolation. A careful choice of the basis function and of its shape parameter enables us to obtain reliable approximations of the cancer evolution. Numerical evidence supports our findings.
منابع مشابه
کاربرد ماشین بردار پشتیبان در طبقهبندی کاربری اراضی حوزه چشمه کیله- چالکرود
Classification of land use extraction always been one of the most important applications of remote sensing and why different methods are created. Over time and with greater accuracy were developed more advanced methods that increase the accuracy and the extraction classes that were closer together in terms of quality are better. SVM is one of these methods in the study of this method for the ex...
متن کاملNew RBF collocation methods and kernel RBF with applications
Abstract. A few novel radial basis function (RBF) discretization schemes for partial differential equations are developed in this study. For boundary-type methods, we derive the indirect and direct symmetric boundary knot methods. Based on the multiple reciprocity principle, the boundary particle method is introduced for general inhomogeneous problems without using inner nodes. For domain-type ...
متن کاملIncreasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method
The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...
متن کاملComparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel
Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best” choice of SV kernel used by non-expert in SVR, whereas there is no evidence, exc...
متن کاملLearning the kernel matrix by resampling
In this abstract paper, we introduce a new kernel learning method by a nonparametric density estimator. The estimator consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-neighbor optimization. The estimator generates a sparse representation for each data point. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016